Total Pages : 2

BT-2/J-25

42033

SEMICONDUCTOR PHYSICS

Paper-BS-115A

Time Allowed: 3 Hours]

[Maximum Marks: 75

Note: Attempt five questions in all, selecting at least one question from each Unit. All questions carry equal marks.

UNIT-I

- 1. (a) What do you mean by Bravais lattices? Describe briefly the Seven Systems of Crystals. Mention and explain with examples the types of Lattices in Cubic systems.
 - (b) Draw the neat diagrams of NaCl, CsCl, Diamond and Zinc Blend.
- 2. (a) Write a short note on Bonding in Solids. 7

(b) Name the various kinds of defects in Crystals and find out the concentration of Schottky defects in a crystal.

UNIT-II

- 3. (a) What are de-broglie waves? Show that the de-Broglie wavelength of a particle of momentum p is h/p. 7
 - (b) Prove that the group velocity is less than the phase velocity in a dispersive medium.

P. T. O.

- (a) Using Uncertainty principle, find the radius of Bohr's orbit.
 - (b) Derive the time independent Schrodinger wave equation and discuss its Physical significance.

UNIT-III

- 5. (a) Discuss the classical theory of free electrons. 7
 - (b) Obtain an expression for Fermi energy at T=0 K in a good conductor and hence find the average energy of an electron.
- 6. (a) Discuss the effective mass of an electron and explain its Physical significance.
 - (b) Distinguish between Metals, Semiconductors and Insulators on the basis of Band theory.

UNIT-IV

- 7. (a) Discuss the Conduction Mechanism and Band model for Intrinsic Semiconductors.
 - (b) Derive an expression for charge carrier concentration in n-type semiconductors and also discuss the position of Fermi level in the same.
 8
- 8. (a) Describe the I-V characteristics of a p-n junction diode.
 - (b) Explain the principle, construction and working of a semiconductor laser.